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We develop, implement, and demonstrate a reflectionless sponge layer for trun-
cating computational domains in which the time-dependent Maxwell equations are
discretized with high-order staggered nondissipative finite difference schemes. The
well-posedness of the Cauchy problem for the sponge layer equations is proved,
and the stability and accuracy of their discretization is analyzed. With numerical
experiments we compare our approach to classical techniques for domain truncation
that are based on second- and third-order physically accurate local approximations
of the true radiation condition. These experiments indicate that our sponge layer
results in a greater than three orders of magnitude reduction of the lattice truncation
error over that afforded by such classical techniques. We also show that our strongly
well-posed sponge layer performs as well as the ill-posed split-field Berenger PML
absorbing boundary condition. Being an unsplit-field approach, our sponge layer
results in~25% savings in computational effort over that required by a split-field
approach. © 1998 Academic Press

1. INTRODUCTION

The analysis of electromagnetic problems involving pulsed radars and high power n
crowaves, the regulation of exposure of humans and electronic devices to electromagn
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REFLECTIONLESS SPONGE LAYERS 185

transients, radar cross-section reduction efforts, and ground-penetrating radar mode|
requires numerically solving the underlyiligear time-domain Maxwell equations [15]

oB

EZ—VXE

5 (1.1)
— =V xH-1],
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whereJisanimpressed current. Inthe absence ofimpressed charges the fields are diverge
free,V-D =0, V.B = 0. In general, system (1.1) is closed with constitutive relatibns,
F[E, H] andB = GJ[E, H], that are hereditary functionals of the electit) and magnetic
(H) fields. For example, to model linear propagation of electromagnetic transients throu
water or biological tissue one would employ the constitutive relatibasoH, whereug
is the permeability of free-space, abgx, t) = e(X)E(x, t) + fé x (X, t —tHE(X, tHdt/,
wheree(x) > ¢ for x € R3is the dielectric permittivitye, is the permittivity of free-space,
andy (x, t) (the “memory”) is the time-domain susceptibility kernel [15]. Although recent
technological advances have made it necessary to consider nonlinear problems [20],
nonlinearity in these cases is introduced at the level of the constitutive relations so syst
(21.1) remains linear. A mini-review of computational electromagnetics (CEM) can be foun
in [19].

Inatypical application we wish to solve for the fields everywhere inside the computation
box depicted in Fig. 1 for a given incident signal. A very successful numerical approac
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FIG. 1. The computational domain is embedded in free-space.
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is the finite-difference time-domain method (FD-TD, also known as the Yee-scheme [28
A good review of the method and of a host of applications can be found in [25]. The FL
TD method is a nondissipative second-order accurate finite difference scheme in wh
the field unknowns are staggered in space-time. In fact [18], it id&stsecond-order
accurate scheme for the time-dependent Maxwell equations that preserves the diverge
free property oD andB, and many radiation/absorbing boundary conditions (RBC/ABCS)
have been developed to truncate FD-TD lattices. Staggering the unknowns in space-t
also results in more efficiency [10]. However, electrically large electromagnetic problen
and the need to increase the predictive dynamic range [25] of CEM modeling codes wh
retaining the capability to do the computation with existing computational resources, c:
for numerical schemes with an order of accuracy greater than two. High-order accuracy
also called for when use of realistic models of materials is made; our previous work [2
explored this issue for the Yee-scheme and suggested that staggered nondissipative sch
of O(At?)40O(A%) accuracy [6], wherg is the cell size in each spatial coordinate direction
andAt is the timestep, are more natural for such problems. Additionally, taking into accoul
the amount of arithmetic operations per timestep and using the results in [21] we can estim
the computational cost of the (2, 4) relative to the Yee-scheme for two-dimensional proble!
asCre! ~ 1.16 x (v22/v24)(e}l$t/L)3/4, wherev?? andv?* are the respective CFL numbers,
eg" is the total phase error allowed to accumulate, &mslthe computational domain size
w.r.t. smallest wavelength in the problem. For a fixedthe (2, 4) scheme should be used
with v?* & 0.1 x v?? to balance the time and space errors. However, the (2, 4) is still muc
cheaper than the Yee-scheme for electrically large problems and high accuracy.

Unfortunately, high-order schemes have not been accepted by the engineering CI
community. One reason for this is the wider stencil of these methods that does not alls
for a straightforward implementation of the absorbing boundary conditions [7] needed
simulate the fact that the problem to be solved is embedded in free-space. Previous atter
with conventional sponge layers [14, 17] and image methods [4, 5] do not appear to he
been as successful as required in order for them to become popular for high-order stent
On the other hand, one-dimensional local radiation boundary conditions [13] are easy
implement with high-order stencils.

In this paper we address the radiation boundary condition issue for high-order stagge
stencils. In Sectio 3 a reflectionless sponge layer is developed in rectangular coordinate
itis invisible to propagating waves impinging on it and is used for the purpose of absorbir
such waves as they exit a computational domain. The derivation allows us to produ
using the inverse Fourier transform, time-domain equations that we discretize and use a
absorbing boundary condition for the (2, 4) staggered scheme which is briefly describec
Section 2. We show that our sponge layer equations form a strongly well-posed systern
all the necessary extra terms are lower-order with respect to the principal part of Maxwel
equations. Contrary to the standard radiation conditions, the sponge layer herein does
alterthe local nature of the interior scheme and makes irrelevant the boundary condition (E
used on the last set of nodes on the computational boundary; we implement a perfect elec
conductor (PEC) condition on these nodes; i.e., the tangential fields satisfy a homogene
Dirichlet boundary condition. We also show that the discrete sponge layer is stable unc
the necessary and sufficient stability condition of the interior scheme. Numerical scatteri
experiments, designed to isolate and study the error introduced by the sponge layer,
presented in Section 4. There, mesh refinement studies indicate the superiority of the spc
layer. A summary closes the paper in Section 5.
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Significantly, our sponge layer preserves all the desirable properties of the popul
Berenger boundary condition while possessing none of its undesirable mathematical pr
erties. Berenger [2] introduced an electrically and magnetically lossy, perfectly matche
layer (PML) by altering the principal part of Maxwell's equations in order to introduce
anisotropy. In two dimensions (TM-polarization) his equations in the layer are no longe
the familiar 3x 3 hyperbolic system with lower-order electric and magnetic loss terms
Rather, the equations now form ax44 system through an arbitrary splitting of the scalar
field component. Casting the Berenger system in the fars Auy + Bu, 4+ Cu, where
u = (Hy, Hz, Hyy, Eyz)T, allows for a crucial observation as shown in [1]. Thex 4
matricesA and B are not simultaneously symmetrizable; the system is weakly hyperbolic
and standard analysis then leads to proving that the Cauchy problem for the principal p
of the Berenger equations is weakly well-posed and becomes ill-posed under perturbat
by lower order terms (such as the ones needed to damp the waves entering the PN
Consequently, and centered-difference scheme (such as (2.3) below) is bound to be unc
ditionally unstable [1] when used in conjunction with Berenger’s equations. In Section 4 w
show our sponge layer results are comparable to those obtained using the Berenger la
thus, our method is superior in light of the desirability of strongly well-posed problems fo
numerical work. Additionally, we show in Section 4 that the unsplit-field implementatior
of our sponge layer results in memory savings-@5% over Berenger’s split-field PML.

We must note here that [16] derived and demonstrated a reflectionless sponge layer
two-dimensional acoustics; the relationship of our approach to that of [16] is described
Section 3a. Also, some global radiation boundary conditions [8, 9] have been develop
for scalar hyperbolic problems. Their expected performance should be, at least, similar
that of the local reflectionless sponge layer presented herein. Unfortunately, [8] is unsta
when used with nondissipative schemes, while [9] works only in spherical coordinates. /
open problem is whether other global radiation conditions [12, 27] developed for fluid floy
problems can be adapted for CEM.

2. INTERIOR SCHEME

a. Model Equations

SettingD = §Dy = yeEy, B = uH = n(XHy+2H,) in (1.1) we consider the transverse
magnetic (TM) polarization case inside a computational domain. The model equations «

R0 T oz

aH,  9E,
2 - ax (2.1)
GB_EyZ_BHZ_'_BHX.

ot X 0z

The two-dimensional system (2.1) can be cast in the form Auy + Bu, = 0, where
u= (Hx, Hz, Ey)T, and

0 O 0 0 0 —1/u
A=10 0 I/u|, B = 0 0 0 . (2.2)
0 1/e O —-1/e O 0
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By Definition 6.3.1 of [11] system (2.1) is symmetric hyperboli&;and B each have
three distinct real eigenvalues, a complete set of eigenvectors, and are simultaneously s
metrizable (the diagonalizé? of A leavesPBP~! symmetric). Consequently, it is strongly
hyperbolic and the matri®; A + w, B is diagonalizable bys(w1, w;) for any realw:, w;
satisfying|w1|? + |w2|?> = 1. Further, the diagonaliz& and its inverseS-?, are bounded
independent o1, w,. It follows that system (2.1) istrongly well-posed(Theorem 6.3.2

in [11]).

b. Model Discretization and Stability

The discrete field§H X, HZ, EY)T are staggered on a cartesian- z grid of equal
cell size,A, in both coordinate directions. Staggering the, HZ, andEY fields in time
results in the differenced version of (2.1),

n+1/2 n—1/2
M H Xi,j+1/2 —H Xi.j+1/2

= 8%(ct. BEYG j 4172

At
(M —nzi
At - = 8@ BEY ) (2.3)
EY™ — EY"
et = 8% HHZE + 5% HH X

Parenthesized subscripts in (2.3) denote the spatial location where the discrete derivativ
the field variable is to be calculated, while subscripts without parentheses denote the ac
grid location of the relevant field variable. The discrete spatial derivatives are calculated \

1
do ¥ 8P p) = T [o(Sip — S ) +B(Sln — S ). (2.4)

where the spatial shift operator is defined by its ac&bfy, = fi_,, and its subscript(z)
indicates on which of the two spatial indices of the discrete fields it operates. The weigh
« and g, determine the order of accuracy of the scheme, i.e.,

a=1 B =0— O(At?) + O(A?

a=9/8 B =-1/24— O(At?) + O(AY. (2:5)

A standard stability analysis, which entails finding the relationship that ensures none
the eigenvalues of the amplification mat@xof (2.3) are outside the unit circle, produces
the necessary stability condition

<
@~ A2

wherev = cAt/A is the CFL number set with respect to the wavefront spaed1/ /€ )
which is always the fastest speed in any given dielectric. When (2.6) is met, the amplificati
matrix is said to satisfy the von Neumann condition. Because (2.1) is strongly hyperbol
the matrix S that diagonalizes; A + w,B also diagonalize®, i.e., H = SQS™. Itis
easy to check thatl HT = I when the von Neumann condition is satisfied, so by Theoren
6.2.5(i) of [26] restriction (2.6) imecessary and sufficient

(2.6)
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c¢. Radiation Boundary Conditions for Model Scheme

To solve scattering problems embedded in an unbounded region one needs effec
RBC/ABCs imposed at the boundary of the finite-sized computational domain; a multituc
of such conditions has been derived [7] and are applied to the tangential fields.

The longer stencil of the (2, 4) scheme allows (2.3) to be brought up to a distance
3A /2 away from the tangential to the boundary field variable which is to be updated with
local RBC. As aresult, numerical boundary procedures are needed to update two additio
tangential field nodes, one electric and one magnetic, interior to the tangential electric fie
boundary node. A solution to this problem can be effected using the popular local conc
tion [13]

9 0 n 9 9
Bn( —,— U= cos9Ps— —c— | U =0, 2.7
m(an at) ]1;[1( I ot 8n) (2.7)

wherem is the order of “physical” accuracy!;@f‘bs are the angles of perfect absorption,
U is a tangential (electric or magnetic) field variable at the boundary,0g@ad is the
spatial derivative in the outward normal direction to the computational domain boundar
The situation is depicted in Fig. 2; the nodes we deal with are to the right of the vertic
dashed line. Assuming that the electric field everywhere is known at timeriemed the
magnetic field at time level — 1/2, the scheme that includes the treatment of all the node:
on the vertical right-hand computational boundary and produces updated field variable:
all locations (including the “ghost” nodes) is as follows: updatg with (2.3) up to node

(N + 1, j) and imposeBnH Z 4% | = 0 to obtainH Z\" 4% ;; updateH X everywhere
with (2.3); updateE Y with (2.3) up to nod&N, j) and imposeBmEYﬂillJ = 0 to obtain
EY\i1;; imposeBnE Y5 | = 0to obtainE ('} ;. This scheme is possible because the
operatoB,, (form = 2, 3), when applied to, e.g., atangential electric field variable, involves
the nodd = ¢ (herez = N) attime leveln + 1, the node$ < ¢at time levels<n, and the
nodes < ¢ — 1 atthe 0 + 1)th time level. To compute the update of the magnetic ghos
node and to implement the radiation condition at a horizontal computational boundary t

Interior scheme can be completed Ghost nodes

up to here

1
N N+1 « N+2

o—o 04\.- o -9
|

[ XX ] N-1

FIG. 2. The (2, 4) staggered grid along the normal to the computational domain boundary.
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procedure described above is repeated, with the appropriate changes in the tangential fi
and discrete spatial indices. The one-dimensional nature of the operators (2.7) allows
easy implementation at a corner where the horizontal and vertical portions of the bound:
meet. Simply apply the procedure in the vertical direction up to the ogejmax— 1
next to the corner node, and then use the procedure applied in the horizontal direction
all nodesi including the corner node gt = jmax We will see Section 4 that the above
procedure works reasonably well for transient problems.

3. THE REFLECTIONLESS SPONGE LAYER

a. Motivation

An alternative to radiation boundary conditions for absorbing outgoing waves involve
surrounding the computational domain depicted in Fig. 1 with a wave-absorbing layer
thicknesdl. Ideally, the transition from the interior to the absorbing layer should not produc
wave reflection while the fields that have penetrated into the layer should attenuate as t
propagate outward.

Consider the one-dimensional Maxwell system fort( € (—oo, co) x [0, c0),

OH | .y _ OF
p——+0"H=—-—
ot 3
X (3.1)
0E . o oH
ot TOET T

whereo = o* = 0forx < 0 ando, o* > 0 forx > 0. System (3.1) models an electrically
and magnetically lossy “material” (occupyig> 0) with constant wavefront speed, =
1/./€n, placed adjacentto free-spage<{ 0) withwavefrontspeed= 1/, /éoo (Cx < ©).
Using the notatiort; = ¢/0 andt} = u/o*, we compute the dispersion relation relevant
to boundary value problems (e R) in x > 0. For a mode “t=*¥ it is

—w2+i9+i3+i+c§ok2=0, (3.2)
te o tr o ety

wherek is the wavenumber. Upon choosing “material” properties satthatt’ (the “PML
condition”) (3.2) reduces tik = +(1/¢,)(iw + 1/t0); i.e., left/right moving waves in this
“material” travel slower than they do im < 0 and decay exponentially in space at a rate
that is independent of the frequeney Further, if/eo/ w0 = /€/u then (3.1), written as
Ut + Auy + Cu = 0, whereu = (H, E)T, exhibits the following propertiesA = RAR™?
andC = RDR?, whereA = diag{—Cu, Cx}, D = diag{1/Cuote, —1/Cootc}), and R is
the diagonalizer of thé\ in the regionx < 0 where the system is; + Auy, = O; i.e.,
Ay = diag{—c, ¢} = R"*AR. The eigenvectors o are preserved acrogs= 0 while
its eigenvalues are reduced; the interface at 0 will be reflectionless for any propagating
wave impinging upon it from the left. The waves entering this “material” will be slowed
down €5 < ¢)and damped independently of frequency. The regien0 can be terminated
atx = d > 0 with any BC, e.g., PEC, and the combination used as an absorbing bound:z
in a code that solves scattering problems ia 0. Appropriately settingl, t;, andc,, can,
in principle, make the boundary conditionxat= d invisible to waves in the interiot < 0,
as any outgoing wave of amplitud®, that has entered the layer, and subsequently ha:
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reflected from the BC at = d, will be further attenuated while propagating back towards
x = 0 to re-enter the computational domain with amplitudBoe—2%/%t. We note here
that the order of accuracy and stability of the interior scheme is maintained in the layze
since only time-centered lower-order terms are used to implement it.

This one-dimensional case is the only point of contact of our approach with that i
[16]. Our generalization to two and three dimensions involves nonlocal in time lower-ords
terms and is shown below to maintain the reflectionless absorbing property of (3all) for
angles of incidence. The approach in [16] involves local in time lower-order terms and tt
reflectionless property holds only along a “preferred” propagation direction that has to |
identified during the course of the numerical solution.

b. Derivation

We proceed with a review of the fundamental steps in the derivation of our sponge layer
three dimensions. In this way the two-dimensional TE (scalar magnetic field) and TM (scal
electric field) polarizations will be simultaneously treated. A more detailed presentation c:
be found in [29]. A Fourier transform in time¢* dependence) and the frequency-domain
anisotropic constitutive relation3 = ¢ - E andB = 1 - H reduce (1.1) (with) = 0) and
the divergence-free conditions to

iop-H=-V xE

iwe -E=V xH
(3.3)
V.(€-E)=0
V.(u-H)=0,

wherep, €, are the permeability and permittivity tensors of the medium here assumed [2
to be of the form

€ = e(diag{ax, ay, a;}) = €[A]
(3.4)
p = p(diagax, ay, az}) = u[A],

with € andu being real numbers that satisfy> ¢g andu > uo. In (3.4), the elements of
the diagonal matrix

[A] = diaglay, ay, a;} (3.5)

are, in general, complex dimensionless constants.
Next, scaled fields are introduced as

Ex. Ey. E2)T =[Gl }{Ex, Ey. Eo)T
H

« Ay, Fi)T = [G] Y {Hy. Hy. H)T, (3.6)

and

[G] = diag{gx. 9y, 9} (3.7)
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with gy, 9y. g, being, in general, complex constants. Using the notaBi@md A to denote
the tensors with matrix representatio® pnd [A], respectively, we rewrite (3.3) in terms
of the scaled fields,

ia)y,K~G_'|:|=—Vx(é~IAE)
iweA-G-E=Vx (G- F)
V.(eA-G-E)=0 (3.8)

V.(uA-G-H)=0.
The choice of the scaling factorgy, gy, 9., according to the equations

G @ @ e
9y a; 0z ay Ox a

allows us to cast (3.8) in the form

ia),ul:| = -—VaxE

i weE = Va X H
Vo () = 0 (3.10)
Va- (uH) =0,

whereV, def X(1/ Jaydz)ox + Y(1//axaz)dy + 2(1/ . /axay)d,. The system (3.10) is rem-

iniscent of the modified Maxwell system with complex coordinate stretching used in [3
Indeed, using the notation

S = A8z, Sy =8, S = .aay, (3.11)

(3.10) becomes mathematically equivalent to the modified, frequency-domain, Maxw
system in [3]. However, there is an important difference: the system in (3.10) is for tt
scaled fields while the equivalent one in [3] was proposed assuming that the fields
physical fields. The nonphysicality of the fields in [3] manifests itself as the requirement f
an arbitrary field-splitting in order to produce the time-domain equations for the absorbir
layer.

Assuming plane wave propagation behavior for the scaled fields in the anisotropic medit

E=G1 E=Epexp—ik-r)
- ] (3.12)
H=G"1.H=Hgyexp—ik-r),

wherek = Xk, + Jky + Zk;, andEo, Ho are the scaled complex-constant field amplitudes,
the dispersion relation, easily obtained from (3.10) as

+ 2+ (3.13)

w’ue =

R[5
S| X
R[N
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is satisfied by

ky = ks, Sinf cos¢
ky = ks sinf sing (3.14)
k; = ks, cosf,

wherek = w. /€. Clearly, the propagation characteristics of the wave akarig andz
can be controlled by varying, s,, ands; or, effectively (in view of (3.11)), by varying the
properties of the anisotropic medium.

c. Reflection Properties

A relationship between the tensors of two anisotropic media separated by a planar int
face can be established for the interface to be reflectionless for all frequencies and all ang
of incidence (except grazing). This relationship is given in the following without proof. The
interested reader may consult [29] for the details.

Without loss of generality the planar interface is taken to coincide witlz thed plane
in a cartesian coordinate system. The spaee0 (Medium 1) is filled with a homogeneous
medium with tensors;[A1], u[A4], where [A1] = diag{ax, a1y, a1}, and corresponding
Six, S1y, andsy, values given by (3.11). The spage> 0 (Medium 2) is filled with a
homogeneous medium with tensegbA ], 1o Az, where [A;] = diag{ayy, ay, az,}, and
correspondingsy, Sy, andsy, values given by (3.11). A plane wave propagating from
Medium 1 toward Medium 2 is assumed to be obliquely incident on the interface &

Its polarization is assumed arbitrary. For the material interface to be reflectionless t
following relationships between the properties of the two anisotropic media are necesse

€1=¢€ 1= U2, (3.15)

and
Six = Sx, Sy = Spy. (316)

Equation (3.16) can be rewritten in terms of the elements of the teAs@aed A ,, making
use of (3.11). The relations are easily obtained

an _ Ay _ %

= . (3.17)
Ay dyy Az

The use of this result in the construction of absorbing sponge layers for numerical gt
truncation is discussed next.

d. Construction of 2D TM Layers

Consider arectangular domafp, in a linear, homogeneous, isotropic medium of permit-
tivity € and permeability:, and the electromagnetic field with TM polarization. To absorb
outgoing waves we surround tkeby layers that dissipate the waves propagating througk
them. If sufficient field attenuation is effected by these absorbers, zero field values may
assumed at their outer border, thus allowing for simple Dirichlet boundary conditions to |
imposed at the ends of the domain of numerical computation without giving rise to spuriol
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FIG. 3. The dark corner region is designatelL,.

(nonphysical) reflections. Figure 3 depicts the corner region of the dofhéim the x—z
plane) surrounded with a sponge layer of thickneésk two dimensions we distinguish
two types of such layers: edge-layers and corner-layers.

Edge-layer. These are placed onthe four edges of the rectangular computational doma
The layers labeleBML, andPML, in Fig. 3 fall in this category. Consider layBML;. Let
Medium 1 be the medium insid@. Thus,e1 = €, u1 = u, anday, = ayy = a; = 1. Let
Medium 2 be the layelPML,. According to the results in the previous section, layki_,
will be perfectly matched to the interior mediuneif = €, u, = n and, from (3.17),

Qx = 8y = Wz, 8= w;l (318)
or, in matrix form,
[AP] = diag{w, wz, w; '} (3.19)

Note thatw, is not determined at this point. Using (3.11) in (3.14), the wave number in th
2 direction inside layePML; has the form

Ko, = w./ 1€ /Aoy COSH = w./[Lew; COSH. (3.20)
However, as stated earlier, it is desirable to equally attenuate waves of all frequencies
they propagate through this edge-layer. Thus, the choice

w//

Sr=w, =1+ = (3.21)

lw

leads to a wave variation in tiedirection inside thé®?ML, of the form

efikgzz — efiwA /ueZCOSGefw’Z’A/ueZCOSG. (322)
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From the second term on the right-hand side of this last equation it becomes clear that
wave is attenuated in thedirection at a rate controlled by, . Equation (3.22) allows us

to pick the layer parameters so that the PEC backing reflects a desired amount back |
the interior domain. IfEq is the amplitude of the outgoing wave impinging upon EiéL,
layer then the field that returns to the interior is

R~ Ege2dvzviecos, (3.23)

whered is the width of the layer. Appropriately choosidgandw/ results inR being as
small as desired. Finally, taking into account the fact that the elements of the scaling mat
[G] for this edge-PML are (from (3.9%x = 02y = 1 andgy, = w,, Maxwell’s curl
equations for TM-polarized fieldsdy, H,, andEy) insidePML, are written in component
form as

iopw,Hy = —(V x E)y
iouH; = —w,(V x E), (3.24)
iwewzEy = (V x H)y,

where(V x F)q denotes thé component of the curl df.
Use of (3.21) in (3.24) followed by an inverse Fourier transform results in the time
dependent form of the sponge layer equations (assuming that all fields are zero @r

oH
np T HwzH = —(V X E)y
aH, o [ :
I T —(VxE);,—w] | (VxE)dt (3.25)
0

eaa—Ety +ew,Ey = (V x H)y.
Clearly, the first and third equations in (3.25) have the standard form for the wave prop
gation in a lossy medium with electric conductivity= ew, and magentic conductivity
o* = pwj. The second equation in (3.25) is different in the sense that a time integral ¢
thez component of the curl of the electric field appears on the right-hand side.This term
interpreted as a time and field-dependent source term.
The remaining three edge-layers are similarly constructed.

Corner-layer. These are placed at the four corners of the 2D rectangular domair
Figure 3 depicts one of them &ML,,. The PML,x must be constructed in such a way
that it is matched to both edge-layelPdyiL, andPMLy. In view of (3.17) and the fact that
the [A]-matrices of thePML, andPML; layers are, respectively, diag;1, wy, wy} and
diag{w;, wy, w;l}, this corner-layer should have parameteend ., and elements of its
[A]-matrix should satisfy the relations

-1

Wz wz ax
a, a w
y z z
R (3.26)
x_ Wx _ &
ay ay  wy

It is straightforward to show that these relations lead to the followipgrpatrix for this
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corner-PML,

[A@¥] = diag{ﬂ, Wiy, w—} (3.27)
w w

X z

which may also be written in the more convenient form,
[A®Y] = [AP][AX]. (3.28)

From (3.11), thes parameters for thEML,, are easily found to bg, = wy, sy, = 1, and
s, = w;. Considering thaiv, andwy have already been constructed according to (3.21), the
expressions fok; andky in (3.14) make it clear that attenuation in b@hndX directions
occurs as the wave propagates through this corner-layer. Finally, using the aforementio
values ofs parameters and the fact tligt= wy, gy = 1, andg, = w,, Maxwell's equations
(TM polarization) inside th&ML; take the form

iopw,Hy = —wy(V x E)y
iopwyH; = —w,(V x E), (3.29)
iwew,wyEy = (V x H)y.

In view of the fact that

" " " " "o
Wy, = (” w_> (1+ w—) — 14 DTl Mt (3.30)

iw iw iw (iw)?’

the time-dependent form of (3.29) is

9H ‘
p 0 L = (9 % By - w/ (V x E)xdt
0
oH; 7 ” t !
M ot + pwyH; = —=(VxE); —w; [ (VxE),dt (3:31)
0

JoE t
ea—ty + e(wy + wy)Ey + Ew;'w/z’/ Eydt' = (V x H)y.
0

There are now three source terms present. The ones in the first and second equatior
(3.31) are similar with the ones present in the edge-layer equations in the sense that t
involve time integrals of the specific component of the curl of the electric field. The sourc
term in the third equation in (3.31) is slightly different. It involves the time integral of the
corresponding electric field component.

The remaining three corner-layers are similarly constructed.

e. Discretization

The usefulness of the proposed sponge layer lies mainly on the fact that the frequen
domain formulation (3.24) and (3.29) lead to convenient implementation of absorbers f
grid truncation in discrete, transient wave simulatiomghout the requirement for split-
ting of the field components. Only the discrete forms for time derivatives and time inte
grations are discussed since discrete forms for the spatial derivatives are dependent or
choice of placement of the field components on the numerical grid and, provided they ¢
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effected according to the various popular stable schemes, are irrelevant to the unsplit-fi
formulation that is the focus of this work. In this manner, spectral, fourth-, sixth-, etc., orde
accurate methods, or spectral methods on rectangular grids can be used. All extra te
are discretized to the order of accuracy of the time-marching scheme (2.1). Therefore,
accuracy of the discrete sponge layer equatior3(iat?) + O(A”), wherep = 2 or 4 is

the order of accuracy of the spatial stencil.

Edge-layer. Consider the layer described by (3.25). Using @e\t?) accurate trape-
zoidal rule for the numerical calculation of this source term one obtains

nAt n-1
1
/ (V x E),dt’ = § :(v x E)YMAt 4+ Z(V x E)(VAt, (3.32)
o 2

m=0

where the superscriffit notation is used to indicate that the specific quantity is calculatec
at timet = gAt. Introducing the quantity

n
FV =Y (VxE)™ (3.33)

and using standard central differencing for the approximation of the time derivative, tt
semi-discrete form of (3.25) is obtained in view of (3.22) as

//AtZ

Hz(n+1/2) _ Hz(n—l/2) . (l+ u; t) (VxE)W - 22— F- D (3.34)

Clearly, onceH, has been updateé; should be updated also using
F(ﬂ) F(n Dy (Vv x E)(n) (3.35)

The time-dependent equations for the edge-layer ikttlieection and their subsequent
semi-discrete approximations are developed in a similar fashion. For each layer one tir
dependent source term is introduced. Its update involves the simple operation indicatec
(3.35). Time averaging the termag Hy, andwy E,, along with (3.32)—(3.34), results in an
overall O(At?) accurate discretization of (3.25).

Corner-layer. Next, consider the layer described by (3.29). Using the notation

At
+ _ ”
oy = 1+ ?wq
At (3.36)
(Xq = 1— 7wq,

the relevant semi-discrete forms of the first and second equations in (3.29) are

o Atat w/ At2 2
H{MY2 = 2 H1/2 — (v x )Y — § (v x E){™
z z
(3.37)
- Ataf ”At2
n+1/2) _ % yn-1/2) z n _ (m
H, = —a;{ H, TOQL (VxE),” — g (V x E);

Again, O(At?) accuracy is maintained.
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The time discretization of the source term in the third equation in (3.31xatn + %)At
will involve the integral

(n+1/2)At
/ E,dt’. (3.38)
0
Using the trapezoidal rule for the numerical calculation of this integral and in view of th
fact that the electric field is sampled in time at poimtg,i = 1, 2, ..., one obtains
(n+1/2) At n
/ Eydt' = > E{™ALt. (3.39)
0 m=0

This last expression, along with the definition of the quantities

At
Vog =1+ 7(11/p + wg)
At (3.40)
Vg = 1= — (wp +wg),
leads to the followingO(At?) accurate form for the semi-discrete approximation of the
third equation in (3.31):

1 Vo At 12 w/w! At2
(n+1) _ /zx () (n+1/2) _ TxTz=" E (m)
Ey =7 Ey + ey+(v X H)y T Ey . (3.41)
ZX zZX zX m=0

The time-dependent equations for the other three corner-PMLs and their subsequ
semidiscrete approximations are developed in a similar fashion.

f. Well-Posedness

We now show that the extra terms appearing in (3.25) and (3.31) are lower order (u
differentiated) perturbations of the strongly well-posed problem (2.1). Then, via Theore
(4.32) of [11], our sponge layer equations are atsongly well-posed

Edge-layer. We begin by rewriting (3.24) in two dimensions as

. 0E
|(X)BX=—y
0z
E
iwB, = _ OE (3.42)
X
. oH, oH
iwDy =
@By =5 T

closed with constitutive relations

B, =u<1+ f”—2> Hy
lw

(3.43)
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Using the inverse Fourier transform in (3.42)—(3.43), we obtain the edge-PML equations
the time-domain

9B,  0E,
ot az
98 _ 9% (3.44)
ot ax
Dy _ _0H; 4 aHX’
at ax d9z
closed with the hereditary constitutive relations
t
By = pHy —}—;Lw;'/ Hy dt’
0
t
v OH
B,=u / e vt )M, dt’ (3.45)
0 o’

t
DyzeEy+6w/z// Eydt/.
0

Now, the first and third equations in (3.45) just indicate that there are magnetic and elect
losses in the tangential to the layer directions, while the second equation indicates mem
of the time rate of change of the normal to the layer magnetic field. Taking the time derivati
of every equation in (3.45) and subsequently applying integration by parts (assuming z¢
initial conditions for the fields in the layer) to the second one, we obtain

0 By o Hy ”
=u— H
T TR Ak
0B oH C
T = i ? [ e Ok, a (3.46)
at ot 0
aDy aEy "
K

Substituting (3.46) in the left-hand side of (3.44) we recover (2.1), modified by lower-orde
(undifferentiated) terms. Due to the equivalence of (3.44) (with (3.46)) and (3.25) we s:
that the extra term in (3.25) is a lower order term.

Corner-layer. System (3.29) can be put in the same form as (3.42) now closed wit
constitutive relations

Bx = M& Hy
Wx

B, = ,U«& H, (3.47)
Wz

Dy = ew,wyEy,
wherewzx) = 1+ wy,/iw. It easy to show that

Yo _ g, Paoo/Wxp — 1 (3.48)
Wx(z) 1+ Ia)/wx(z)
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With (3.30) and the inverse Fourier transform we obtain again (3.44) but now closed wi
the hereditary constitutive relations

t
B = b+ g — uf) [ &by
0

t
B, = uH; + pn(w) — wl) / ez H, dt (3.49)
0
oD oE t
Wy = ea—ty + e(wy + w))Ey + ewyw) / E, dt’.
Jo

Substituting (3.49) in (3.44) yields again system (2.1) modified by lower order (undifferer
tiated) terms. It is interesting to note that whefi= w] then the magnetic aspect of (3.49)
is lossless.

g. Numerical Stability

In Section 3f we showed that the sponge layer equations are just Maxwell’s equatio
for a homogeneous nondispersive dielectric modified with lower-order (undifferentiate
terms. Such terms were seen to be equivalent to terms proportional to the fields or tt
weighted time integrals, e.gHx, [y Hxdt/, or [5 e *¢-")H,dt". Also, in Section 3e we
showed that these extra terms can be implemented in a way that preserves the sec
order time accuracy of (2.3). Thus, upon discretization, terms like those below will modif
the amplification matrix of the staggered-grid finite-differenced Maxwell equations for
homogeneous nondispersive dielectric as indicated in the order symbol:

At{Hy}discrete ™ @) (A1)

t
At / H dt’} ~ O(At?)
{ 0 X discrete (3-50)

t
At { / g vzt det’} ~ O(At?).
0 discrete

As a result, in a von Neumann stability analysis, the original amplification matrix will be
modified by terms that will beéD(At) and O(At?) uniformly in wavenumber. This will
result in thenecessary and sufficientondition (2.6) of the interior scheme to also hold
for the sponge layer equations (via Theorem 6.2.6 in [26]).

In (3.25) and (3.31) the additional terms are proportional to,ﬁ;gv, x E),dt’. However,
upon discretization,

t
At {/ (V x E)Zdt/} ~ O(vAt) (3.51)
0 discrete

uniformly in wavenumber; thus, (2.6) also holds for the thusly modified Maxwell equation
in the sponge layer.
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4. NUMERICAL EXPERIMENTS

Figure 4 depicts a circular scatterer of relative permittivifyand radiug s illuminated
by a cylindrically spreading wave generated with the pulsed electric-current point-sour
JX, X, 1) = §8(x — X)gt) = Y(ii-j—j-/A?)g(t), where (', j’) is the location of the
source poink’ on the grid,g(t) = Eq(10— 15 cosw;t + 6 cosw,t — coSwst) is a compact
smooth function supported ine [0, ts], andEg is the maximum source amplitude. When
present, the scatterer is centered on the grid, and the point source is placetge-that=
2rs andys = y'. Otherwise, the source is centered on the grid and the scatterer is a phant
(s = 1). We takets = 10°°s,wm = 2rm/ts,m = 1,2, 3, s = 4,15 = 2Cts/3, and
Eo = Zop/320 with Zy = /1u0/€0 being the free-space impedance.

Our scattering problem is embedded in a two-dimensional, infinite, homogeneous, lo:
less, dielectric witke, = 1. We solve it numerically with scheme (2.3), in a finite-sized test
domainQ¢, with boundarydQ2c, itself embedded inside a much larger reference domair
Q@ with boundaryo 2. . DomainQc is truncated by either placing @f2¢c one of the local
RBCs considered herein, or by surroundiigwith a uniform width(d = 4cts/15) sponge
layerQs bounded by Q¢ anddR2s. OndRs anda2; we implement a PEC boundary con-
dition using images [21], thus preserving the interior scheme spatial order of accuracy the
The reference domain boundary is placed sufficiently far fo@eg to provide causal iso-
lation between all points in the test domain and reflections generatsd, abver a given
computation time interval [OT = 3ts]. The physical size 0of2c is L? = 25(C,ts)?/9.

To test and compare the boundary treatments considered herein we compute the err

e(nAt) = |[EYe(, -, nAt) — EY® (., -, nAb)|2; n € [0, T/At], 4.1)
QL
Qg
30 Qc

| SCATTERER

SOURCE
&

x5 = ] =

BQC—“

BQL_“

FIG. 4. Geometry used in the numerical experiments.
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introduced at each timestepby the artificial truncation of2c. In (4.1), EY%- s the
discrete electric field in the appropriate domain indicated by the superscript, ahd the
norm is taken over the interior ¢ic. Note thate(nAt) = 0forn € [0, Tin/At], whereTiy

is the least time required for the outgoing waves to start interactingp§igh The definition
(4.1) is a measure of how well the artificial truncation approximates the true “physics”
the boundary which dictate that there should be no boundary felt by the outgoing wave
were the ABC ideal, this measure would be identically equal to zeralfar. We also
compute|le()|l,, £ = 1,2, 00, for n € [0, T/At] on a sequence of grids generated by
successively halvingh while keeping the CFL number constantiat= 0.1. We assume
lle()le ~ O(A") and compute the exponeanfrom the numerical results. On the coarsest
grid A = 0.02, whileA = 0.00125 on the finest grid.

The sponge-layer/free-space interface is reflectionless for analytic waves; however, (
crete waves may partially reflect from it. For this reasefi,andw? are implemented as
the functionsomax(X/d)P, wherex is distance from the sponge-layer/free-space interface
along the normal into the layer ands the order of variation. We choose parameters so tha
(3.23) forwf = wj = omax = 28.125/(Zycts) gives 109 for the R (3.23) due to the PEC
backing at normal incidence. For the simulations we wped5 andp = 2. The value fod
used herein corresponds to a layer eight grid cells wide &t 0.01. An important param-
eter in the sponge layer is the relaxation time- €p/omax. The time-resolution parameter
in the sponge layer iB = At/ = 93.75vA which, for the values given above, satisfies
0.0117 < h < 0.1875. Thus, the time-discretization is accurately approximating the effec
of the small relaxation timescale in the sponge layer [23]. The parameters in the secol
and third-order Higdon operators were set to provide perfect annihilation of plane wav
impinging normally ond2¢, while enforcing each discrete operator to be implementec
with the second-order-accurate box scheme [13]. Once chosen, the physical width of
sponge layer and all other problem dimensions and parameters were kept invariant dut
the mesh refinement studies.

We first give results for a radiation problem where the scatterer is absent and the sou
is centered in the test and comparison grids. Figure 5 compares the “physical” errors (4
introduced by the boundary truncations. We see the sponge layer to be superior to the o
methods by more than three orders of magnitude. It is interesting to note that the third-or
Higdon operator performs poorly for late times. This is expected, as it is badly behav:
at zero-frequency, where it possesses a generalized eigenvalue that produces instal
[13]. The zero-frequency in our problem is introduced by the fact that in two dimensions
passing wavefront leaves behind it an algebraically decaying residue that persists for I
times. Hence, after the main pulse passes thrdif@h, the remaining slowly decaying
residue acts as a zero-frequency forcing of the boundary operator. Figure 6 summarizes
results of the mesh refinement. Again, the superiority of the sponge layer is evident. T
slope of the dash-dot line on the graph is roughly 4. The ndres|l,, £ = 1, oo, gave
similar results. The deterioration of the third-order condition with grid refinement confirm
our explanation of its poor performance. Figures 7 and 8 present results similar to thc
described in the previous paragraph but for the scattering problem described above.
superiority of the sponge layer is again evident. The slope of the dash-dot line on Fig
is roughly 3.5. All other time norms of (4.1) gave similar results. It must be noted that th
second-order Higdon operator and the sponge layer are robust with respect to change
the physical problem being modeled (from radiation to scattering), while this seems not
be the case for the third-order operator.
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FIG.5. Time evolution of the error (4.1) for the radiation problem.
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FIG. 6. Convergence of the reflection property in thenorm for the radiation problem.
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A=0.00125, v=0.1
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FIG. 7. Time evolution of the error (4.1) for the scattering problem.
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FIG. 8. Convergence of the reflection properties in thenorm for the scattering problem.
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In order to show that the numerical results obtained with our strongly well-posed approa
are similar to those obtained with the ill-posed Berenger system we have used an exist
(2,2) code that implements [2], to solve the scattering problem depicted in Fig. 4. Tt
Berenger layer width was the same as the corresponding parameter in the sponge I
above. The maximum conductivities in the Berenger and sponge layers were tuned to ¢
the least reflection witth = 0.01 andv = 0.5. Figure 9 shows a comparison between the
approach used herein and the Berenger PMkfer 1, 8 = 0in (2.3). Figure 10 shows that
the reflectionless property of both approaches is approached at the rate of convergenc
the interior scheme (here equal to 2). Itis interesting to note that our sponge layer appro:
performs better on the coarser grid. Finally, we note that a comparison of the computatiol
burdens incurred by our sponge layer and by that of Berenger has been presented in [
The conclusions of that comparison hold also for the higher order schemes discussed h
since the use of either Berenger's PML or the unsplit-field sponge layer does not impe
the stencil used for the numerical spatial differentiation of the fields. Thus, the savings
computational resources and labor depend solely on the humber of the extra degree
freedom introduced by each of the two implementations and the number of arithme
operations required for the update of all degrees of freedom per time step. As point
out in [29], assuming a cubical computational domainNofcells per side, the sponge
layer implementation results in memory savings~##5% over Berenger's PML. These
savings are primarily contributed by the faces and edges of the domain, where the unsy
field implementation requires only two and four, respectively, extra degrees of freedor
compared to six for both cases for Berenger’s PML. These savings in computer memory

. A=0.01,v=0.5
10 . T
107 | 1
102 | ]
107 | 1
10 | ]
10° | T ]
10° | 1
= 107 | 1
T 107 | :
e sponge layer
1010 3 —-~— Berenger layer 3
107 E 1
10—11 L ]
10—12 d ]
10—13 L ]
10—14 L ]
10‘15 L . 1 . i .
0.0 1.0 2.0 3.0

tt

S

FIG. 9. Time evolution of the error (4.1) for the scattering problem.
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v=0.5,T=3t,
10" :

102 | llell,, Berenger layer ]
10° | /,/---- llell,, Berenger layer 3
4 . —-—llell,,, Berenger layer
10 . ‘/",/—" llell,, sponge layer 3
107 ¢ e ===~ llell,, sponge layer 1
10° [ e —-= llell,, sponge layer
107 } - 1
10° | . ]
o T !
107§} ]
107 ]
107 | 1
10" | ]
107° } ]

107" : : :
0.01 0.10
A

FIG. 10. Convergence of the reflection properties in theL ,, andL ., norms for the scattering problem.

accompanied by a reduced CPU time since the number of both additions/subtractions
multiplications/divisions required for the update of the fields at both the perfectly matche
faces and edges of the domain is larger for Berenger's PML implementation than that 1
the sponge layer implementation.

5. SUMMARY

We have presented a reflectionless sponge layer for the truncation of cartesian cc
putational domains used in the numerical solution of linear hyperbolic systems arisil
in transient electromagnetics with high-order staggered finite differences schemes. 1
sponge layer is independent of the spatial discretization and our numerical experime
demonstrated its utility when the equations are solved with a particular (2, 4) stagger
nondissipative scheme. We also showed that our approach to absorbing boundary condit
involves systems of equations that possess the mathematical and numerical propertie
the equations that are to be solved in the interior. We have also compared the performa
of the layer relative to the performance of classical local radiation boundary conditior
adapted to the high-order stencil. The sponge layer is superior to these local RBCs fr
the point of view that the “physical” reflection produced by it converges to zero at the ra
of the interior scheme. Our sponge layer allows for the local nature of finite-differenc
discretizations of Maxwell's equations to be maintained at the boundary thus allowing f
ease of parallelization.
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